On some matrix Diophantine equations

Aleksander Grytczuk and Izabela Kurzydło

University of Zielona Góra, Poland

Abstract

A lecture concerns the following matrix Diophantine equations

\[A^x + A^y + A^z = A^w, \]
\[A^x + A^y = A^w, \]

where \(x, y, z, w \in \mathbb{N} \).

In our paper *On some matrix Diophantine equations* we give necessary conditions for solvability of the equation (1) in some positive integers \(x, y, z, w \) under some restrictions for \(A \in M_n(C), n \geq 2 \) concerning eigenvalues of the matrix \(A \).

Let \(A \in M_n(C), n \geq 2 \) is the matrix \(A \) which has at least one real eigenvalue \(\alpha \in (0,1) \). If the matrix equation (1) is satisfied in positive integers \(x,y,z,w \), then \(\max\{x-w, y-w, z-w\} \geq 1 \). If the matrix \(A \) has at least one real eigenvalue \(\alpha > \sqrt{2} \) and the equation (1) is satisfied in positive integers \(x, y, z \) and \(w \), then \(\max\{x-w, y-w, z-w\} = -1 \).

Moreover, we investigate the solvability of the matrix equations (1) and (2) for the non-negative real \(n \times n \) matrices, where \(|\det A| > 1 \), in positive integers \(x, y, z, w \) for (1) and (2). Using the well-know theorems: Schur’s theorem and Peron-Frobenius’ theorem we obtain further results concerning solvability these equations.

Keywords

The matrix equations, Schur’s theorem, Fermat’s type Diophantine equation on matrices.

References

